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ABSTRACT: Mixed metal oxides (MMOs) are a promising class of electrocatalysts for oxygen evolution (OER) and hydrogen evolution 
reactions (HER). Yet, our understanding of relevant reaction pathways, catalytically active sites and synergistic effects is quite limited. Here, 
we applied synchrotron-based X-ray absorption spectroscopy (XAS) to explore the evolution of a Co-Cu-W MMO electrocatalyst, shown 
previously to be an efficient bifunctional catalyst for water splitting. Ex-situ K- and L-edge XAS measurements provided structural environ-
ments and the oxidation state of the metals involved, revealing Co2+ (octahedral), Cu+/2+ (tetrahedral / square planar) and W6+ (octahedral) 
centers. Meanwhile, the in-situ XAS investigations, including X-ray absorption near-edge structure (XANES) and extended X-ray absorption 
fine structure (EXAFS), elucidated the dynamic structural transformations of Co, Cu, and W metal centers during OER and HER. The ex-
perimental results indicate that Co3+ and Cu+ are the active catalytic sites involved in OER and HER, respectively, while Cu2+ and W6+ play 
crucial roles as structure stabilizers, suggesting strong synergistic interactions within the Co-Cu-W MMO system. These results, combined 
with the Tafel slope analysis, revealed that the bottleneck intermediate during OER is Co(III) hydroperoxide, whose formation is accompa-
nied with the changes in the Cu-O bond lengths, pinpointing to a possible synergistic effects between Co and Cu ions. Our study highlighted 
important structural effects taking place during MMOs electrocatalysis and provided essential experimental insights into the complex cata-
lytic mechanism of emerging MMOs electrocatalysts for advanced water splitting.

INTRODUCTION 
Green hydrogen is seen as a promising alternative to carbon-
based fuels for use in various energy systems, including com-
bustion engines, turbines, and fuel cells.1,2 It is produced via 
water electrolysis, a process that can be expressed in terms of 
the two half-reactions, namely oxygen evolution reaction 
(OER) and hydrogen-evolution reaction (HER). OER is consid-
ered as the bottleneck of this process and usually requires high 
overpotentials. The sluggish OER kinetics arise due to chal-
lenges associated with the formation of a weak O-O bond and 
the orchestrating of four proton-coupled electron transfer steps 
at the desired potential. Traditionally, precious metal oxide 
(MO) catalysts, such as RuO2 and IrO2, are applied as the 
benchmark OER catalysts with high catalytic activity. How-
ever, the high cost and scarcity in nature significantly limit their 
widespread use.3 As a result, researchers are exploring the use 
of earth-abundant MOs composed of first-row transition metals, 
such as Co, Mn, Ni or Fe, as promising alternatives.4–7 Remark-
ably, these non-noble MOs often perform better as mixed metal 
oxides (MMOs), where synergetic effects are able to boost the 
catalytic activity for both OER and HER.8–13 For example, the 
Qiao group showed that the presence of Zn and Ni enhances the 
HER activity of CoO, by providing an ideal environment for 
intermediate H-binding (Ni2+) and by boosting the electrical 
conduction (Zn2+).14 In another example, the Nocera group has 

shown that the incorporation of Fe3+ into the nickel oxide (NiO) 
matrix increases the ability of the catalyst to access Ni4+ state, 
thus enhancing the OER performance.11 Furthermore, the em-
ployment of MMOs as bifunctional catalysts also has the poten-
tial to simplify the catalyst design and fabrication, reduce cross-
contamination, and prevent catalyst poisoning, making it an at-
tractive option for the production of green hydrogen. 
A comprehensive understanding of the catalytic mechanism of 
MMOs for OER and HER is being actively explored. Based on 
computational works, the OER in an alkaline medium is gener-
ally considered to occur via one of the two mechanistic path-
ways.28–31 Pathway I, known as the adsorbate evolution mecha-
nism, involves a single active site, in which the activity is 
strongly correlated with the adsorption energies of the M-O in-
termediates. This pathway includes the formation of adsorbed 
M-OH species on the catalyst surface, their subsequent trans-
formation to M-OOH, and the eventual release of O2.32–34 While 
pathway II, known as the lattice oxygen evolution mechanism, 
involves the participation of lattice oxygen in the oxide catalyst 
during O-O coupling and OER35,36. This pathway includes the 
direct combination of two M-O species, leading to O2 formation 
and the generation of active species. Similarly, the HER can oc-
cur via one of two reaction pathways, both of which involve 
electrochemical hydrogen adsorption as the first step in the cat-
alytic reaction. In this context, pathway I proceeds via an 



 

electrochemical desorption step, which is known as the Volmer-
Heyrovsky mechanism. While pathway II, known as the 
Volmer-Tafel mechanism, proceeds via a recombination reac-
tion.36,37. These mechanisms are analogous to the adsorbate evo-
lution mechanism and lattice oxygen evolution mechanism in 
the case of OER, respectively. Furthermore, various descriptors 
have been proposed in the literature to correlate OER and HER 
activity, including the bond strengths of the bound M-OH and 
M-O intermediates,38–41 exchange current density,42–44 the count 
of 3d electrons in the metal ion,41,45,46 number of unsaturated 
sites47,48, or the energy gap between O p-band relative to the 
Fermi level49. The use of descriptors greatly simplifies the un-
derstanding of metal oxide activity trends. 
Additionally, the precise identification of catalytically active 
sites of MMOs electrocatalysts is also attracting substantial at-
tention. In this regard, ex-situ characterization techniques can 
provide information regarding the atomic and electronic struc-
tures of the electrocatalyst pre- and post- catalytic OER / HER, 
while the in-situ investigation can shed light on the dynamic 
evolution of focused active sites over the catalytic process.50,51 
For example, several different in-situ characterization tech-
niques have been used to study OER processes, such as surface 
interrogation-scanning electrochemical microscopy (SI-
SECM),52 transmission electron microscopy (TEM),53,54 Raman 
spectroscopy,31,55 Fourier transform infrared spectroscopy 
(FTIR),56 X-ray diffraction (XRD),57–59 ambient pressure X-ray 
photoelectron spectroscopy (APXPS),60 Fe Mössbauer spec-
troscopy,61 and electrochemical quartz crystal balance 
(EQCM).62–64 In comparison to these techniques, X-ray absorp-
tion spectroscopy coupled with electrochemistry (XAS-EC) of-
fers unique advantages in probing the chemical, electronic, and 
structural information of electrocatalysts. With XAS-EC, oxi-
dation states, coordination environments, bond strengths, and 
catalytic intermediates of absorbed atoms on active species can 
be studied to gain real-time insight into molecule-based cata-
lytic mechanisms under operating conditions.31,59,65–67 In one in-
structive example, studies by the Abruna group identified the 
active sites as Co2+/3+ and Mn2+/3+/4+ redox couples for a bime-
tallic Co1.5Mn1.5O4/C catalyst system for OER and commented 
on the synergistic effect of Mn and Co.68 In another example, 
the Boettcher group revealed the partial Fe oxidation and a 
shortened Fe-O bond length during OER on the synthesized 
Co(Fe)OxHy electrocatalyst, while only Co oxidation was ob-
served in the absence of Fe cation, indicative of the essential 
role of Fe cation for OER.69 
In this study, we delve into the structural dynamics of a versatile 
bifunctional electrocatalyst developed by the Streb group,27 
specifically the Co-Cu-W mixed metal oxide (Co-Cu-W MMO) 
electrocatalyst that was formed by the hydrothermal reaction in-
volving Co-ions, Cu-foam and polyoxometalate precursors 
(Scheme 1). The obtained Co-Cu-W MMO was found to be out-
standing electrocatalyst for both OER and HER, with stable ac-
tivity over prolonged time of more than 10 h. Furthermore, the 
electrocatalysis was highly efficient, with overpotentials of only 
0.3 V and 0.1 V for OER and HER, respectively. However, the 
mechanism of electrocatalysis by Co-Cu-W MMO remains un-
explored.  
Here, employing cutting-edge XAS-EC at the Co and Cu K 
edges, as well as W L edge, we uncover the intriguing structural 
transformations of this MMO that occurs during water splitting. 
Through X-ray absorption near-edge structure (XANES), we 
gain precise knowledge regarding the oxidation states of the 

constituent metals, while extended X-ray absorption fine struc-
ture (EXAFS) unveils the structural changes of each metal cen-
ter over electrocatalysis. By combining Tafel slope analysis to 
derive information regarding the rate-determining step, we 
bring forward plausible mechanisms for catalysis by the Co-Cu-
W MMO. The OER was found to predominantly occur at the 
Co-center, generating CoIII-OOH as a bottleneck intermediate 
that undergoes a rate-determining release of molecular oxygen.  
Importantly, we have also identified interesting structural 
changes that take place at the neighboring Cu-centers. While Cu 
does not undergo a change in the oxidation state, we discovered 
a lengthening of Cu-O bonds neighboring CoIII-OOH interme-
diate, and this result points to a possible synergistic role of the 
Cu-atoms to stabilize CoIII-OOH intermediate. These results 
shed light on the likely mechanism by which the Co-Cu-W 
MMO achieves such excellent OER performance and provide 
target catalytic motifs for future molecular engineering of bi-
metallic electrocatalysts. Under cathodic HER conditions, our 
Cu K-edge XAS-EC results provide strong evidence for the for-
mation of Cu0 nanoparticles (NPs) with diameter increasing 
with electrolysis time to a value of 9 Å.  

 
SCHEME 1. Hydrothermal synthesis of Co-Cu-W MMO. 

 

RESULATS AND DISCUSSION 
Ex-situ XAS: To comprehensively investigate the oxidation 
states and coordination environments of Co, W and Cu elements 
in the MMO, ex-situ XANES and EXAFS were performed. In 
this regard, two model polyoxometalates (POM) were synthe-
sized as references: POM1 (Na10[Co4(H2O)2(PW9O34)2], Figure 
1a) containing Co2+ and W6+ and POM2 (Na5[CoW12O40], Fig-
ure 1b) containing Co3+ and W6+. Synthetic routes and charac-
terization details, see supporting information (SI) and Figure 
S1.  As shown in Figure 1c, the ex-situ Co K edge XANES 
spectra of POM1 demonstrate weak pre-edge features at 7710.6 
eV and an edge energy of 7719 eV. Additionally, the pro-
nounced white line characteristic implies a octahedral (Oh) co-
ordination arrangement of the Co ions in POM1.69  In contrast, 
POM2 exhibits distinct spectral features with a strong pre-edge 
peak (i: 7710.5 eV, assigned to the 1s→t2g transition) and a 
weak peak (ii: 7716.0 eV, assigned to the 1s→eg transition), in-
dicative of a non-centrosymmetric tetrahedral (Td) arrangement 
of the Co ions in POM2.[68] Furthermore, POM2  displays a vis-
ible rising edge peak (iii: 7722.5 eV, 1s→4p) with an edge en-
ergy of 7720.5 eV. These geometry assignments are consistent 
with the previously reported XANES of relevant Co-complexes 
(e.g., Na10[Co4(H2O)2(VW9O34)2]·35H2O, 
K5[CoW12O40]·20H2O).70–72  
The Co K edge spectrum of MMO (Figure 1c) is free of the 
strong pre-edge features existing in POM2, while it shows con-
siderably matching edge energy (7719 eV) and white line peak 
energy to those of POM1, indicative of Co2+ oxidation state and 
Oh geometry of Co element in the MMO.  According to Figure 
1d, the ex-situ XANES W L3 edge spectra of MMO shows an 
edge energy of 10204.6 eV, which is nearly identical to that of 
W6+ containing references POM1, POM2 and WO3 and 
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significantly different from W4+ reference WO2. In addition, the 
broad white line feature shown in POM1, POM2 and WO3,73,74 
was also observed in MMO, demonstrating the Oh coordination 
geometry of W element with W6+ oxidation state. The ex-situ 
XANES Cu K edge spectrum of MMO shows a sharp edge peak 
(1sà4p) at 8981.4 eV (labeled as i, inset Figure 1e) and the 
absence of the pre-edge peak features existing in the Cu2+ 

reference (CuO, 8979 eV, 1sà3d).75 Additionally, the MMO 
shows an edge energy of 8985 eV, which is between that of Cu+ 
(8984 eV) and Cu2+ (8986 eV),76,77 suggesting the presence of a 
mixture of Cu+ and Cu2+ in the MMO. This is further confirmed 
by the linear combination analysis, giving a ratio of 4:1 
(Cu+:Cu2+, Figure 1f, Table S1). 78 

 

Figure 1. (a) and (b) Structures of POM1 and POM2, color scheme: Co atoms in orange, O in red and W in blue. Ex-situ XANES spectra 
of (c) Co K edge, (d) W L3 edge, (e) Cu K edge of MMO and references. (f) Linear combination analysis of the MMO at Cu K edge. 

Next, the experimental ex-situ EXAFS data obtained for POM1 
and POM2 at the Co K and W L edges were simulated based on 
their structures obtained previously via single-crystal X-ray dif-
fraction.70–72 The simulated structure gave good-to-excellent re-
production of the experimental results (R- and K-space fitting 
of POM1 and POM2 data are shown in Figures S2-S3, Table 
S2). The dominant interaction in both POM1 and POM2 is 
metal-oxygen scattering with average bond lengths of 2.019 
(n=2), 2.086 (n=2), 2.258 Å (n=2) in POM1 and 1.805 Å (n=4) 
in POM 2 (n: the number of scattering paths), which signifi-
cantly surpassed the metal-metal scattering. This highlights the 
critical role of the metal-oxygen coordination environment in 
shaping the overall structural characteristics of both model 
POMs. Furthermore, an in-depth analysis of second shell fitting 
of POM1 revealed intense Co-Co scattering at 3.2 Å and weak 
Co-W scattering at 3.5 Å, indicating the presence of neighbor-
ing Co and W atoms. In contrast, a pronounced Co-W scattering 

at ca. 3.5 Å was observed in POM2, consistent with the exclu-
sive Co-W coordination.  
Following the structural studies of model POMs, we investi-
gated the ex-situ Co K edge, Cu K edge, and W L3 edge EXAFS 
spectra of the MMO (Figure 3 and Table 1). The first shell of 
the Co K edge EXAFS data for MMO was successfully fit using 
an octahedral CoO6 geometry with a Co-O bond length of 2.07 
Å. In addition, the second coordination shell revealed two dis-
tinct scattering paths, Co-X at distances of 2.89 Å (n = 2) and 
3.06 Å (n = 6). The identity of X could not be accurately deter-
mined, and either Co or Cu centers gave equally good fit to the 
experimental data, due to similar atomic numbers (Figure S4 
and Table S3). Notably, no Co-W scattering was observed in 
the Co K-edge EXAFS, which is either due to a small number 
of neighboring W-atoms (similar to the EXAFS o9f POM 1, 
Figure 2a), or a completely W-free environment.70–72 



 

 

Figure 2. Ex-situ EXAFS of POM references. (a) Co K edge of 
POM1 (top) and POM2 (bottom), (b) W L3 edge of POM1 (top) 

and POM2 (bottom), where the experimental data is in circles and 
fitted data is the red solid line. Individual path lengths are shown 

with solid lines. MS: multiple atoms scattering paths. 

The Cu K-edge EXAFS data were fit using a 1:4 combination 
of two types of Cu environments, in agreement with the pres-
ence of Cu(II) (20%)  and Cu(I) (80%) ions revealed in the 
XANES Cu K-edge results. The first shell of Cu(I) species was 
modeled as tetrahedral CuO, while the Cu(II) species were 
modeled as square-planar Cu2O, and the Cu-O bond lengths ob-
tained from the fit were 1.85 Å (n = 3) and 1.96 Å (n = 1), re-
spectively.79,80 Additionally, the secondary coordination sphere 
fitting revealed two distinctive Cu-X peaks with bond lengths 
of 3.00 Å (n = 6) and 3.12 Å (n = 3)  (here, X=Co or Cu, Figure 
S5 and Table S4, SI).  
The EXAFS analysis at the W L3 edge was performed using an 
octahedral WO6 first shell with two bond lengths at 1.88 Å (n 
= 3) and 3.01 Å (n = 3, Figure 3c). This observation implies the 
existence of either two distinct WO6 Oh environments in a 1:1 
ratio or one distorted trigonal prismatic configuration. The trig-
onal prismatic configuration of WO6 is rare, but it has been ob-
served in mixed metal oxides with AABB packing arrangement 
of metal-oxo clusters.81 Moreover, the presence of another 
metal (possibly Co or Cu) was detected at a distance of 3.37 Å 
(n=2). Notably, no W-W scattering paths were observed, sug-
gesting that all W atoms in the MMO are isolated and sur-
rounded by Co or Cu metal oxides (Figure S6 and Table S5). 
These extensive ex-situ characterizations lay a solid foundation 
for subsequent in-situ XAS studies, which will contribute to an 
in-depth understanding of the dynamic structural evolution of 
MMO as well as the potential catalytic mechanism. 

 

Figure 3. EXAFS data fitting of (a) Co K edge, (b) Cu K edge, 
and (c) W L3 edge of MMO where the experimental data is in cir-
cles and fitted data is the red solid line. Solid grey dash lines show 

the data window that have been fitted. Metal-oxygen scattering is 
shown in black and metal-metal scattering is shown in green. 

Table 1. Summary of structure information of MMO. 

 Co K 
edge 

Cu K 
edge 

W L3 
edge 

Oxidation 
state Co2+ Cu+/Cu2+ W6+ 

Geometry Oh Td / SP Oh 

Fitted bond 
lengths 

(X = Cu, Co) 

Co-O: Cu-O: W-O: 

2.07 Å 1.85 Å, 
1.96 Å 

1.88 Å, 
3.01 Å 

Co-X: Cu-X: W-X: 
2.89 Å, 
3.06 Å 

3.00 Å, 
3.13 Å 3.37 Å 

 
XAS-EC: Prior to the in-situ XAS studies, the electrocatalytic 
performance of the solid-state MMO (drop-casted on carbon pa-
per, MMO@CP) was examined for both HER and OER in al-
kaline electrolyte (0.1 M KOH, pH 12.8). Linear sweep voltam-
metry (LSV) polarization curves (Figure 4a, c) show that the 
MMO@CP exhibits the satisfying activity with overpotentials 
of 365 mV and 447 mV for HER and OER at the current density 
of 10 mA/cm2 (based on geometric surface area). The overpo-
tential is somewhat higher than the previously reported compo-
site electrode,27 which we attribute to the loss of the elec-
trode/catalyst bonding interaction during the transfer of the 
MMO sample from the Cu foam growth substrate to the carbon 
electrode. To assess the long-term stability of the MMO@CP, 
chronoamperometry was conducted over 5 h. The current den-
sity was stable under both HER and OER conditions and the 
comparison of LSV curves before and after 5 h of electrolysis 
(Insets in Figure 4b, d) displayed nearly identical performance. 
The current density for HER exhibited an initial increase in the 
current density, hinting at the possible electrochemical genera-
tion of the catalytically active species (Figure 4b). The OER ac-
tivity remained at 82% activity after the 5 h period (Figure 4d), 
demonstrating the extraordinary stability of solid-state MMO 
under harsh oxidative electrocatalytic conditions.27 

 
Figure 4. Catalytic performance of MMO@CP for HER and OER. 
LSV polarization curves of MMO@CP and CP reference for HER 
(a) and OER (c), scan rate: 5 mV/s; chronoamperometric studies 



 

of (c) HER (-0.4 V vs RHE) and (d) OER (+1.68 V vs RHE); in-
set: LSV comparison of HER and OER performance. 

  To gain critical insights into the structural evolution of the 
MMO under operating conditions, the XAS-EC measurements 
were conducted at open circuit potential (OCP) and electrocat-
alytic potentials (+1.68 V vs RHE for OER and -0.4 V for HER) 
using a custom-built spectroelectrochemical cell (Figure S7, 
SI). The Co K edge XANES spectra observed under OER con-
dition (Figure 5a) show a noticeable positive shift of the edge 
energy (from 7719 eV to 7722 eV), indicative of the oxidation 
of Co2+ to Co3+. This transformation is further supported by the 
oxidation states analysis (Figure S8, SI). Additionally, the in-
crease in the intensity of the pre-edge peak (7711 eV, s → d, 
Figure 5a inset) is expected for the increase in the 3d vacancy 
that takes place when the cobalt ion is oxidized. The increased 
pre-edge intensity may also be a reporter of a deviation from the 
centrosymmetric Oh geometry. Such loss in symmetry is known 
to led to increased 3d–4p hybridization of the metal orbitals, 
thus increasing the “allowedness” of the 1s → 3d transition.82,83  
In contrast, under HER condition, no edge energy changes were 
observed, indicative of the maintained pristine Co2+ in the 
MMO. The increased pre-edge peak intensity and the expansion 
of the white line region demonstrates a change in the coordina-
tion environment around the Co site during both OER and HER.  
 The Cu K edge XANES spectra (Figure 5b) exhibit no signifi-
cant alterations in pre-edge and edge energy (from 8985 eV to 
8984.9 eV) during OER, implying oxidation-state-stable prop-
erty of the Cu sites during OER. In contrast, Cu edge energy 
was observed to shift to a lower value (from 8985 eV to 8984.5 
eV, Figure S9, SI) with the successive scans during HER, im-
plying reduction of Cu+/Cu2+ ions to metallic Cu NPs. Linear 
combination analysis of these scans also indicated the formation 
of metallic Cu (from 0 to 62.9%), while the Cu+ was found to 
be diminished (from 80% to 21.6%) and Cu2+ (from 20% to 
15.5%) (Table S6, Figure S10, SI). This dynamic transfor-
mation suggested that the Cu(I) sites are the pre-catalytic spe-
cies that are electrochemically reduced to the catalytically ac-
tive Cu NPs.  
The W L3 edge XANES spectra displayed no discernible 
changes in either OER or HER (Figure 5c). The stability of the 
W sites implied that it may act as a passive spectator, providing 
structural support to the active Co and Cu sites responsible for 
OER and HER, respectively. Furthermore, the absence of sig-
nificant changes in the W coordination environment was ob-
served by the retained broad white line features, indicating that 
the W atoms remained isolated and surrounded by Co or Cu 
metal oxides. For a summary of the structural changes of Co, 
Cu and W in the MMO, see Table S7.  
Next, XAS-EC EXAFS measurements were performed to cap-
ture the local structural evolution of the MMO during electro-
catalytic water splitting. The analysis of the Co K-edge EXAFS 
during OER imply the retention of the octahedral geometry and 
the shortening of the Co-O bond length from 2.07 Å to 1.9 Å, 
along with the visible decrease in distances of one of the Co-X 
pathways (from 3.06 Å to 2.9 Å, Figure 6a). Under HER condi-
tion, the Oh coordination of Co underwent a distortion charac-
terized by a pronounced elongation of the two axial Co-O bonds 
(from 2.07 Å to 2.27 Å), while the length of the four equatorial 
Co-O bonds remains unchanged. Simultaneously, there was an 
increase in the Co-X bond length from 2.89 Å to 3.56 Å (n = 2), 
and 3.06 Å (n = 6) to 3.25 Å (n = 4) (Table S8, Figure S11).84  

The analysis of the Cu K edge EXAFS spectra during OER 
shows that the both Cu moieties remained the original coordi-
nation environment, with Cu-O bond lengths increasing to 1.93 
Å from 1.85 Å (n = 3, Cu+), and 2.16 Å from 1.96 (n = 1, Cu2+, 
Figure 6b). Furthermore, the bond length for Cu-X decreased to 
2.59 Å (n = 6) from 3.0 Å (n = 6), and 2.26 Å (n = 2) from 3.12 
Å (n = 3, Table S9 and Figure S12). More drastic EXAFS 
changes were observed during HER, where Cu species under-
went a compositional transformation to metallic copper NPs, 
observed as the growth of the new Cu-Cu scattering feature at 
2.7 Å (Figure 6b). This feature grows with electrolysis time 
from CN = 0 to 7 over the period of 4 scans. The size of the in-
situ formed Cu NPs was evaluated from the number of Cu-Cu 
scattering paths, using the calibration curve obtained for Cu-Cu 
scattering in nanoporticles with known diameters, reported in 
the previous studies.85–87 We find that the Cu-NP diameter in-
creases over the time of XAS-EC scans, reaching approxi-
mately 9 nm at the end of 4th scan (Table S10 and Figure S13). 

 
Figure 5. In-situ XAS-EC XANES spectra of (a) Co K edge, (b) 
Cu K edge, (c) W L3 edge of MMO under -0.4 V vs RHE (for 
HER), 0 V vs RHE (for OCP) and +1.68 V vs RHE (for OER). 
The insets show the pre-edge region of corresponding curves. 

Based on the W L3 edge EXAFS spectra (Figure 6c), the Oh 
coordination environment around W became more distorted 
during both OER and HER. OER was accompanied by the de-
crease in one W-O bond length from 3.01 Å (n=3) to 2.46 Å 
(n=1) and 2.83 Å (n=2), while the other remained constant un-
der error bar (1.88 Å (n=3)). In contrast, the length of one W-O 
bond was reduced from 3.01 Å (n=3) to 2.35 Å (n=1) under 
HER conditions, while the other W-O bond lengths (1.88 Å 
(n=3) and 3.01 Å (n=2)) remained unchanged (Table S11 and 
Figure S14). No significant changes in W-X bond lengths were 
observed.84   



 

 
Figure 6. XAS-EC EXAFS measurement of (a) Co K edge, (b) Cu 
K edge, (c) W L3 edge of MMO@CP under -0.4 V vs RHE (for 

HER in red), 0 V vs RHE (for OCP in black), and +1.68 V vs 
RHE (for OER in blue). Grey line: M-O scattering, green line: M-
M scattering, vertical dash line: r region of R space used for fit-

ting, grey circles: experimental data. 

Mechanisms: The insights into HER and OER mechanisms 
were obtained by combining electrochemical Tafel slope anal-
ysis and XAS-EC data fitting. For HER, Tafel slopes exceeding 
120 mV/decade (theoretical limit for Tafel slope analysis for 
HER), were obtained for the MMO@CP (142-208mV/decade, 
Figure S15a), while even higher Tafel slopes were observed in 
the previous study on the composite MMO@Cu electrode (335 
mV/decade).27 Notably, such high Tafel slopes have been re-
ported for HER in basic media, where the water dissociation 
step (H2O → H+ + OH−) was proposed as the rate-determining 
step (RDS).88–90 As aforementioned, the XAS-EC data of the 
MMO displayed notable changes in the Cu center during HER, 
indicating the formation of Cu NPs (Table S6). Based on these 
findings, we propose a mechanism that involves the electro-
chemical conversion of Cu(I)-oxo pre-catalyst to catalytically 
active Cu NPs, whose protonation to form surface M-H species 
is the RDS (Figure 7). The subsequent H2 releasing step may 
occur either via Heyrovsky or Tafel pathway. The established 
reactivity of Cu-np in the literature further supports this obser-
vation.91–93 It is likely that the nanostructured Cu sites exhibit 
improved HER kinetics via exposing more active sites on the 
metal surface. 94  

 
Figure 7. Proposed mechanism for HER.  

For OER, the Tafel slopes were derived for two possible OER 
mechanisms: the single-site (SS) and the double-site (DS) mod-
els. Both mechanisms involve the formation of M-OH and M=O 
intermediates on the MMO surface, where M denotes an active 
site on the surface of the MMO catalyst: 
 

 M+	OH! → 	M− OH+	e! (Step 1) 

 M−OH+	OH! → M = O+	H"O	 +	e! (Step 2) 

The SS model proceeds via the formation of MOOH intermedi-
ate: 

 M = O+	OH! → MOOH+	e! (Step 3) 

 MOOH+	OH! → M+	O" +	e! (Step 4) 

While the DS model proceeds via the bimetallic O-O coupling: 
 

 2	M = O → M+	O"  (Step 5) 

The derivation of Tafel slopes assuming different rate-deter-
mining steps is shown in SI (Section S4.1,), while the calculated 
Tafel slopes are shown in Figure 8a. Different RDSs can be dis-
tinguished at low overpotentials, where 120 mV/decade slope 
is expected when Step 1 is RDS. The Tafel slopes of 40, 23.6, 
16 or 14 mV/decade are expected when Step 2, Step 3, Step 4 
or Step 5 is RDS. Experimental Tafel slopes of the MMO were 
derived from LSV data (Figure 8b, Figure S15b), illustrating 
values increasing from 16 mV/decade at 0.07 V overpotential to 
180 mV/decade at 0.25 V overpotential. Given that the experi-
mental slope drops below 20 mV/decade at low overpotentials 
(below 0.071V), we hypothesize that the RDS is the removal of 
O2, either via Step 4 (for the SS mechanism, with a Tafel slope 
of 16 mV/decade) or via Step 5 (for the DS mechanism with a 
Tafel slope of 14 mV/decade). In this context, the OER bottle-
neck intermediates are identified to be either MOOH (for SS 
mechanism) or M=O (for DS mechanism).  

 
Figure 8. (a) Simulated and (b) experimental Tafel slope analysis 

for OER. 

According to the XAS-EC data, Co and Cu centers demon-
strated chemical and structural evolution during OER (Figures 
5 and 6). Notably, only the Co center underwent a change in the 
oxidation state from Co2+ to Co3+, while the Cu centers maintain 
their original Cu+/2+ states. Based on these observations, a SS 
mechanism was proposed involving CoIII-OOH as the bottle-
neck intermediate before the RDS of O2 evolution. As depicted 
in Figure 9, the catalytic cycle includes cooperative catalysis by 
a redox-active Co center CoII-H2O and redox-innocent Cu. This 
proposed mechanism is supported by the XAS-EC data, which 
show the elongation of the Cu-O and the compression of Co-O 
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bond lengths in the intermediate CoIII-OOH, a structural change 
that is consistent with the increased charge of the Co3+ center. 
This change in the Co-O-Cu bond lengths indicates the mecha-
nism by which the neighboring Cu-atoms tune the reactivity of 
the CoIII-OOH intermediate, facilitating the evolution of O2.  
Previous studies involving mixed-metal Co/Cu oxides and sul-
fides have also reported a synergy between the two metals dur-
ing OER.95,96 In general, the synergy was attributed to the mod-
ulation of reactive, high-spin octahedral Co(III) intermediates 
and these conclusions are in agreement with our experimental 
observations. Our observation of bond length changes in the 
Co-O-Cu moiety may to a structural change critical for the for-
mation of either more reactive or more stabilized Co(III)-hy-
droperoxides and may be explored as a criterium for the design 
of future MMO catalysts. 
 

 
Figure 9. Proposed mechanism of the SS model for OER. 

CONCLUSION: 
In summary, by employing synchrotron-based XAS, combined 
with the Tafel analysis, we reveal the complex catalytic behav-
ior exhibited by the Co-Cu-W MMO@CP under alkaline OER 
and HER. The HER was found to proceed via catalytic Cu NPs, 
electro-generated from the Cu(I)-oxo pre-catalysts. We also 
find that the Cu NPs undergo dynamic evolution during cataly-
sis, with the NP diameter increasing during the first few hours 
of electrolysis. The OER was found to proceed via CoIII-OOH 
bottleneck intermediate, whose electronic behavior and struc-
ture is tuned by the neighboring Cu atoms. The identification of 
key redox-active centers, determination of RDS, and revelation 
of intermediates, signifies a substantial leap in our understand-
ing of the fundamental mechanisms of electrocatalytic water 
splitting driven by the Co-Cu-W MMO. This not only guides 
the knowledge-based design of efficient MMO electrocatalysts, 
but also underscore the significance of synergistic interactions 
within MMO systems, thereby laying a solid foundation for the 
design of next-generation electrocatalysts for challenging en-
ergy conversion and storage reactions. 
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